Hong Kong Diploma of Secondary Education Examination

Physics

The following list of data, formulae and relationships will be provided in the question papers for candidates' reference:

List of data, formulae and relationships

Data

molar gas constant	$R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1}$	
Avogadro constant	$N_{\rm A} = 6.02 \times 10^{23} {\rm mol}^{-1}$	
acceleration due to gravity	$g = 9.81 \text{ m s}^{-2}$ (close to the Earth)	
universal gravitational constant	$G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$	
speed of light in vacuum	$c = 3.00 \times 10^8 \text{ m s}^{-1}$	
charge of electron	$e = 1.60 \times 10^{-19} \mathrm{C}$	
electron rest mass	$m_{\rm e} = 9.11 \times 10^{-31} \rm kg$	
permittivity of free space	$\varepsilon_0 = 8.85 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$	
permeability of free space	$\mu_0 = 4\pi \times 10^{-7} \mathrm{H} \mathrm{m}^{-1}$	
atomic mass unit	$u = 1.661 \times 10^{-27} \text{ kg}$	(1 u is equivalent to 931 MeV)
astronomical unit	$AU = 1.50 \times 10^{11} \text{ m}$	
light year	$ly = 9.46 \times 10^{15} m$	
parsec	$pc = 3.09 \times 10^{16} m = 3.26 ly = 200$	6265 AU
Stefan constant	$\sigma = 5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$	
Planck constant	$h = 6.63 \times 10^{-34} \text{ J s}$	

Rectilinear motion

For uniformly accelerated motion :

$$v = u + at$$

$$s = ut + \frac{1}{2}at^{2}$$

$$v^{2} = u^{2} + 2as$$

Mathematics

Equation of a straight line	y = mx + c
Arc length	$= r \theta$
Surface area of cylinder	$= 2\pi rh + 2\pi r^2$
Volume of cylinder	$= \pi r^2 h$
Surface area of sphere	$= 4\pi r^2$
Volume of sphere	$=\frac{4}{3}\pi r^3$

For small angles, $\sin \theta \approx \tan \theta \approx \theta$ (in radians)

Astronomy and Space Science		Energy and Use of Energy	
$U = -\frac{GMm}{r}$ $P = \sigma A T^4$	gravitational potential energy	$E = \frac{\Phi}{A}$	illuminance
	Stefan's law	$\frac{Q}{t} = \kappa \frac{A(T_{\rm H} - T_{\rm C})}{d}$	rate of energy transfer by conduction
$\left \frac{\Delta f}{f_0}\right \approx \frac{v}{c} \approx \left \frac{\Delta \lambda}{\lambda_0}\right $	Doppler effect	$U = \frac{\kappa}{d}$	thermal transmittance U-value
		$P = \frac{1}{2}\rho A v^3$	maximum power by wind turbine
Atomic World		Medical Physics	
$\frac{1}{2}m_{\rm e}v_{\rm max}^{2} = hf - \phi$	Einstein's photoelectric equation	$\theta \approx \frac{1.22\lambda}{d}$	Rayleigh criterion (resolving power)
$E_{\rm n} = -\frac{1}{n^2} \left\{ \frac{m_{\rm e} e^4}{8h^2 \varepsilon_0^2} \right\} = -\frac{13.6}{n^2}$	eV	power $=\frac{1}{f}$	power of a lens
	energy level equation for hydrogen atom	$L = 10 \log \frac{I}{I_0}$	intensity level (dB)
$\lambda = \frac{h}{h} = \frac{h}{h}$	de Broglie formula	$Z = \rho c$	acoustic impedance
$\frac{p}{\theta \approx \frac{1.22\lambda}{1}}$	Rayleigh criterion (resolving power)	$\alpha = \frac{I_{\rm r}}{I_0} = \frac{(Z_2 - Z_1)}{(Z_2 + Z_1)}$	$\frac{2}{2}$ intensity reflection coefficient
d		$I = I_0 e^{-\mu x}$	transmitted intensity through a medium

A1.
$$E = mc \Delta T$$
 energy transfer during heating
and cooling D1. $F = \frac{Q_1 Q_2}{4\pi \varepsilon_0 r^2}$ Coulomb's law
A2. $E = l \Delta m$ energy transfer during change
of state D2. $E = \frac{Q}{4\pi \varepsilon_0 r^2}$ electric field strength due to
a point charge
A3. $pV = nRT$ equation of state for an ideal gas D3. $E = \frac{V}{d}$ electric field between parallel plates.
(numerically)
A4. $pV = \frac{1}{3} Nmc^2$ kinetic theory equation D4. $R = \frac{\rho l}{A}$ resistance and resistivity
A5. $E_K = \frac{3RT}{2N_A}$ molecular kinetic energy D5. $R = R_1 + R_2$ resistors in series
D6. $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$ resistors in parallel
B1. $F = m \frac{\Delta v}{\Delta t} = \frac{\Delta p}{\Delta t}$ force D7. $P = IV = I^2R$ power in a circuit
B2. moment $= F \times d$ moment of a force D8. $F = BQv \sin \theta$ force on a moving charge in a
magnetic field
B3. $E_P = mgh$ gravitational potential energy D9. $F = BII \sin \theta$ force on a current-carrying
conductor in a magnetic field
B4. $E_K = \frac{1}{2}mv^2$ kinetic energy D10. $B = \frac{\mu_0 I}{2\pi r}$ straight wire
B5. $P = Fv$ mechanical power D11. $B = \frac{\mu_0 NI}{l}$ magnetic field due to a long
straight wire
B4. $a = \frac{v^2}{r} = \omega^2 r$ centripetal acceleration D12. $\varepsilon = N \frac{\Delta \Phi}{\Delta t}$ induced e.m.f.
B7. $F = \frac{Gm_1 m_2}{r^2}$ Newton's law of gravitation D13. $\frac{V_s}{V_p} \approx \frac{N_s}{N_p}$ ratio of secondary voltage to
primary voltage in a transformer

C1.	$\Delta y = \frac{\lambda D}{a}$	fringe width in double-slit interference	E1.	$N = N_0 e^{-kt}$	law of radioactive decay
C2.	$d\sin\theta = n\lambda$	diffraction grating equation	E2.	$t_{\frac{1}{2}} = \frac{\ln 2}{k}$	half-life and decay constant
C3.	$\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$	equation for a single lens	E3.	A = kN	activity and the number of undecayed nuclei
			E4.	$\Delta E = \Delta mc^2$	mass-energy relationship

Hong Kong Diploma of Secondary Education Examination

Combined Science (Physics part)

The following list of data, formulae and relationships will be provided in the question papers for candidates' reference:

List of data, formulae and relationships

Data

acceleration due to gravity	$g = 9.81 \text{ m s}^{-2}$ (close to the Earth)
speed of light in vacuum	$c = 3.00 \times 10^8 \mathrm{m s^{-1}}$
charge of electron	$e = 1.60 \times 10^{-19} \mathrm{C}$
electron rest mass	$m_{\rm e} = 9.11 \times 10^{-31} \rm kg$

Rectilinear motion

For uniformly accelerated motion :

$$v = u + at$$

$$s = ut + \frac{1}{2}at^{2}$$

$$v^{2} = u^{2} + 2as$$

Mathematics

Equation of a straight line	y = mx + c
Arc length	$= r \theta$
Surface area of cylinder	$= 2\pi rh + 2\pi r^2$
Volume of cylinder	$= \pi r^2 h$
Surface area of sphere	$= 4\pi r^2$
Volume of sphere	$= \frac{4}{3}\pi r^3$

For small angles, $\sin \theta \approx \tan \theta \approx \theta$ (in radians)

$E = mc \ \Delta T$	energy transfer during heating and cooling	$R = \frac{\rho l}{A}$	resistance and resistivity
$E = l \Delta m$	energy transfer during change of state	$R = R_1 + R_2$	resistors in series
		$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$	resistors in parallel
$F = m \frac{\Delta v}{\Delta t} = \frac{\Delta p}{\Delta t}$	force	$P = IV = I^2 R$	power in a circuit
$E_{\rm P} = mgh$	gravitational potential energy	$\frac{V_{\rm s}}{V_{\rm p}} \approx \frac{N_{\rm s}}{N_{\rm p}}$	ratio of secondary voltage to primary voltage in a transformer
$E_{\rm K} = \frac{1}{2}mv^2$	kinetic energy		
P = Fv	mechanical power		